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New Aspects of the Cosmology of Extra Dimensions

Pierre BineÂtruy1

Received Month 3, 1999

The cosmology of higher dimensional spacetime models in which ordinary matter
is confined to a hypersurface (brane) is discussed. The nonconventional aspects
of the corresponding cosmological scenarios is emphasized. Some issues relevant
to the primordial universe, such as inflation, are reviewed.

1. INTRODUCTION

Theories of fundamental interactions often require the introduction of

new compact spatial dimensions. One may cite Kaluza±Klein theories, super-

gravity, and superstring theories. This leads to interesting cosmological sce-

narios which have been studied in the last 20 years (see, e.g., ref. 1). But
this type of idea has received a new twist with the advent of strongly coupled

string theories: gravitational interactions may not feel the same spatial dimen-

sions as the gauge interactions of the Standard Model. In other words, our

four-dimensional world would be confined to a hypersurface in a higher

dimensional universe and only gravitational effects would allow us to probe

the extra dimensions: photons being confined to the hypersurface, electromag-
netic meansÐ such as lightÐ would not directly reach such dimensions. For

example, in the supergravity theory of HorÏ ava and Witten [2 ], spacetime is

11-dimensional, whereas the Yang±Mills gauge fields live on 9-branes, which

are 10-dimensional hypersurfaces. After compactification on a 6-dimensional

compact manifold, this leaves us with 5-dimensional supergravity coupled
with 4-dimensional gauge and matter supermultiplets.

Once one realizes that the structure of matter has been tested at the

microscopic scale only through the standard gauge interactions, for example,

using electromagnetic probes, this leaves us with a new exciting possibility:
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new dimensions which are felt only by the gravitational interactions may
open up at distance scales much larger than the ones already tested by the
standard gauge interactions in modern-day accelerators [3 ].

It is well known in Kaluza±Klein theories that the Planck scale MP is

expressed in terms of the Planck scale M of the higher dimensional theory

and of the radius of the compact dimensions. When this radius is large in

terms of the former scale M, the Planck scale may be much larger than M.

In other words, the fundamental scale M of the theory may be orders of

magnitude smaller than the derived scale MP. Indeed, M could be as low as
the electroweak scale [3 ], thus leading to possibilities of exploring the effects

of the new dimensions in the next generation of colliders.

Such possibilities obviously lead to unconventional scenarios for cosmol-

ogy. If the scale M is much larger than the electroweak scale, cosmology

might indeed be the privileged way of probing such theories.

In the following, we will start by describing an example of such a theory,
the HorÏ ava±Witten theory [2], where there is a single compact dimension of

the type described above. We will then briefly review more general possibilit-

ies with a large number of extra dimensions. We then discuss the properties

of inflation in this context and make some comments about the presence and

role of topological defects.

2. EXAMPLES OF HIGHER DIMENSIONAL THEORIES

Let us start with an example which appears in the context of strongly

coupled superstring theories. It is believed that the strongly coupled heterotic

E8 3 E8 string theory is adequately described by an 11-dimensional theory.
In the field theory limit, this so-called M-theory has been described by HorÏ ava

and Witten [2 ]. The gravity sector is described by the unique 11-dimensional

supergravity action on R10 3 S1/Z2, which, restricted to boson fields, reads

6 5
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where I, J, . . . are 11-dimensional indices, A, B, . . . are 10-dimensional

indices, and G is the field strength of a fundamental three-form C (G 5 6dC
1 ? ? ? ).
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The compact dimension has an orbifold structure: the Z2 projection

corresponds to the reflection on the 11th coordinate (x11 ® 2 x11) and acts

as the chirality projector on the gravitino degrees of freedom. The 3-form C
is odd under this projection, whereas the metric tensor is even. The 10-

dimensional action is understood as an integral over the two boundaries

associated with the orbifold endpoints (9-branes, that is, hypersurfaces with

nine spatial dimensions), say at x11 5 0 and x11 5 1/2.

The bosonic action (1) and the corresponding fermionic one constructed

in ref. 2 do not form the complete quantum action, but they are rather an
effective description including the lowest orders of an expansion in the

parameter k 2/3
11 . Because of the presence of the boundary, the fermionic action

includes divergent terms proportional to d ( 0) (as well as its derivatives)

possibly to some power: in a full quantum treatment, the boundary presumably

acquires a nonzero thickness of order M 2 1 and the divergent d ( 0) terms are

smoothed out into terms of order M, where M is the fundamental mass scale:

k 2
11 5 M 2 9 (2)

One may compactify the theory down to five dimensions [4±10]. We

choose a simple ansatz for the metric

ds2 5 e 2 2 f /3(g a b dx a dx b 1 e f g( 0)
ab dx a dx b) (3)

where a , b , . . . are 5-dimensional indices and the 6-dimensional metric

g( 0)
ab is normalized ( * d 6x ! g( 0) 5 M 2 6) in such a way that the 6-dimensional

volume V6, as measured from 5 dimensions, is given by

V6 5 M 2 6e3 f (4)

The 5-dimensional bosonic action reads

6 5 2
1

2 k 2
5 # d 5x ! g 1 5(5) 1
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16 p a # d 4x ! g(4)e f tr F a b F a b (5)

where g(4) is the determinant of the 4-dimensional metric g m n on the two 3-

branes which form the boundary of spacetime (from now on, the indices m ,

n are are four-dimensional indices), a 5 (4 p )2/3/2, and

k 2
5 5 M 2 3 (6)

The scale where the theory becomes 11-dimensional corresponds to the
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unification of the gauge couplings. It is therefore the grand unification scale

MU. It can be computed from the mass of the Kaluza±Klein states and is

therefore obtained from (4):

MU , Me 2 f /2 (7)

The corresponding common value a U of the gauge couplings is read from (5):

a U , a e 2 f (8)

If we denote by R the radius of the orbifold dimension, one also reads from

(5) the value of the 4-dimensional (reduced) Planck scale:

m2
P 5 M 3R (9)

Putting back factors of p , one obtains (see, e.g., ref. 11)

M 5 MU (2 a U) 2 1/2 , 3.4MU

R 2 1 5
1

2 p

M 3
U

m2
Pl

(2 a U)
2 3/2 , 10

2 3 MU (1 0)

where we used MU 5 3 3 1016 GeV and a 2 1
U 5 23.3.

This shows that:

x Since R 2 1 is smaller than the unification scale MU where the theory

becomes 11-dimensional, there is a mass range where the theory is

effectively 5-dimensional [12];

x The fundamental scale in the theory is the 5-dimensional Planck scale

M, which is somewhat smaller than the Planck scale.2

It should be noted that, because the original theory is not fully determined

by the action (1), its compactified version is valid only for a certain range

of mass scales. In particular, we disregarded the nonzero thickness of the

boundary, presumably associated with some nonperturbative effect in quan-
tum M-theory. Had we restored a nonvanishing thickness, the gauge fields

of the boundary would propagate in the corresponding layer (of width of

order M 2 1): this would generate in the 4-dimensional theory massive states

of mass M. Since we consider on the other hand the Kaluza±Klein states of

mass R 2 1, our treatment is not consistent unless we impose the condition

M R À 1. (11)

This is obviously satisfied if we plug in the data (1 0). Notice that, physically,

2 Strictly speaking, it is the 11-dimensional Planck scale M11 , Me 2 f /3. More precisely, M11 5
MU (2 a U)

2 1/6 , 1.5 MU.
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MR is the number of Kaluza±Klein states of mass less than M, which contrib-

utes to computations involving Kaluza±Klein states running in loops.

The two points noted just above may be pushed to their extreme:

x The theory looks 4-dimensional only up to the scale R 2 1; it has been

stressed for some time [13 ] that experimental data only constrain compactifi-

cation scales to be larger than the presently available energy, say 1 TeV. But

the present compact dimension is only felt by gravitational interactions, which
have been tested only to the millimeter range, which corresponds to R 2 1 ,
102 4 eV.

x If we want to keep fixed the 4-dimensional Planck scale mP, we see

from (9) that the larger R is, the smaller the fundamental scale M is; following

the previous remark, M could be as small as (m2
P 3 10

2 4 eV)1/3 , 108 GeV.

This is of course not compatible with (7) if one considers MU to be of the
order of 1016 GeV. But it has been noted [14 ] that the presence of extra

spacetime dimensions, which amounts to the presence of Kaluza±Klein states

in the effective lower dimensional theory, may significantly lower the unifica-

tion scale to a value larger than the compactification scale by only one order

of magnitude. Of course, the Kaluza±Klein states that one needs must be

charged under the gauge symmetry: they are necessarily those associated to
the 6-dimensional compact manifold of volume V6.

The previous discussion rests on the hypothesis that there is a single

compact dimension which is felt solely by the gravitational interactions. In

the case of n such compact dimensions caracterized by the same radius R,
(9) is modified to

m2
P 5 M 2 1 nRn (12)

where M is now the (4 1 n)-dimensional Planck scale. This can be easily
derived [3 ] by considering two test masses m1 and m2 placed within a distance

r; they are subject to a gravitational potential:

V(r) , m1m2

M n 1 2

1

r n 1 1 for r ¿ R

V(r) , m1m2

M n 1 2 Rn

1

r
for r À R (13)

where, in the latter case, the potential may be seen as due to a n-dimensional

line with uniform mass density.
It has been stressed recently that in this case the higher dimensional

Planck scale might be as low as the electroweak scale. For example, with

n 5 2, this would correspond to R , (1 02 4 eV) 2 1, that is, R in the millimeter

range. Interestingly, this represents the limit of present experimental tests of
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gravity. In such an instance, the electroweak scale would be the fundamental

scale of the theory, the Planck scale mP being relegated to a derived scale.

It requires, however, to explain the large hierarchy between R 2 1 and the
electroweak scale. It is fair to say at this point that, however exciting this

possibility is, there is no convincing theoretical argument to choose such a

low value of the fundamental scale M, which may take any value between

the electroweak and the 4-dimensional Planck scale mP.

String models with two or more dimensions have also been constructed,

based on the type I theory of open and closed strings [15 ]. Other examples
have been considered where our 4-dimensional world was imbedded in a

topological defect [16, 17, 3].

3. NONCONVENTIONAL COSMOLOGY

One may think that, if our 4-dimensional world is a slice (a 3-brane)

within a higher dimensional spacetime, its evolution might be considered for

the most part independently of what happens in the outer dimensions. This

is not so. It is, for example, well known in general relativity that if we

consider a slice in an enveloping spacetime, physics within the slice will be

sensitive not only to the intrinsic curvature of the slice, but also to the
curvature of the slice relative to the enveloping geometry. This is described

by the notion of extrinsic curvature.

We will show how this modifies the evolution of the 4-dimensional

universe on a simple example: a 5-dimensional spacetime R4 3 S1/Z2 with

matter confined to the world volume of a 3-brane. The metric is chosen to be

ds2 5 2 n2( t , y) d t 2 1 a2( t , y) dxi dxi 1 b2( t , y) dy2 (14)

where xi are the 3-dimensional spatial coordinates and y is the compact
orbifold coordinate ( 2 1/2 # y # 1 1/2, the Z2 symmetry corresponding to

the reflection y ® 2 y). Assuming isotropy and homogeneity in the brane,

placed at y 5 0, we choose an energy-momentum tensor

T a
b 5

d ( y)

b
diag( 2 r , p, p, p, 0) (15)

The metric is continuous at the brane and satisfies the Einstein equations

G a b 5 k 2
5T a b (16)

where G a b is the Einstein tensor. A local study of how discontinuities of the

derivatives of the metric on the brane are constrained by the Einstein equations

(in particular for a 5 b 5 5) yields [18 ]
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aÇ 20

a2
0

1
aÈ 0

a 0

5 2
k 2

5

36
r ( r 1 3p) (17)

where a 0( t ) 5 a( t , y 5 0) and we chose n( t , y 5 0). In terms of the Hubble

parameter of our 4-dimensional world

H 5
aÇ 0

a0

(18)

this equation reads

HÇ 1 2H 2 5 2
k 4

5

36
r ( r 1 3p) (19)

This should be compared with the more standard equation

HÇ 1 2H 2 5
k 2

4

6
( r 2 3p) (20)

with k 2
4 [ m 2 2

P , which is obtained in the standard 4-dimensional cosmology.

This difference of behavior can be related to the extrinsic curvature of the
4-dimensional slice [18 ]. On the other hand, the equation of conservation of

energy remains unchanged:

r Ç 1 3( p 1 r )
aÇ 0

a0

5 0 (21)

The new equation obviously generates some definite departure from the

standard behavior. For example, if we consider matter with an equation of

state p 5 w r , in both cases (21) imposes that

r } a 2 3(1 1 w)
0 (22)

but our new equation (19) yields

a 0(t) } t1/ [3(1 1 w) ] (23)

whereas the standard behavior from (20) is

a 0(t) } t2/ [3(1 1 w) ] (24)

A physical way to picture this striking difference of behavior is through

ª graviton evaporation.º It has been noted that the presence of the wall breaks

translational invariance in the compact dimensions and allows momentum
nonconservation: the massive modes of the graviton on the wall may evaporate

into the bulk and once in the bulk they have a small probability of returning

since the phase space associated with the wall is so much smaller than the

phase space associated with the bulk. Thus some energy will be seeping into
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the bulk [3 ]. In the general case of n compact dimensions, the rate for graviton

production is proportional to 1/Mn 1 2 (as can be seen by writing the metric

g a b 5 h a b 1 h a b /M(n 1 2)/2, which ensures that h a b is canonically normalized).
Restricting our attention to a single compact dimension (n 5 1) and to

radiation (w 5 1/3), the rate of evaporation is, on dimensional grounds,

r Ç 5 2 M 2 3T 8 5 2 M 2 3a 2 8
0 (25)

which, using (22), yields a 0 } t1/4 in agreement with (23).

Moreover, once in the bulk, the gravitons are standard gravitons of a

5-dimensional theory and are therefore stable. The most natural way to

condense these gravitons is to interpose a second wall with energy density

r * , 2 r . This is exactly what happens in the model which we consider: the
two walls are the boundaries of the orbifold direction, i.e., the 3-branes at

y 5 0 and y 5 1/2. More precisely [18 ], since we allow for a y-dependent

metric (14),

r *n(1/2) 5 2 r n( 0) (26)

Another possibility is to introduce a diffuse source of gravitons throughout

the bulk. This could be provided by a field related with the fundamental 3-
form CIJK of 11-dimensional supergravity introduced in (1): the so-called

Ramond±Ramond scalar j (Cabc [ j e abc).

4. INFLATION

One may now consider the problem of inflation from the point of view

of this nonconventional cosmology. The first question is whether one should

envisage inflationary scenarios in the bulk or in the brine. Bulk inflation has

the potential danger of expanding exponentially the compact dimensions,

leading to very large radii (possibly a welcome feature if we are to consider
theories with a low M scale). On the other hand, it might lead to a sharp

decrease of the bulk energy density, a necessary condition for a scenario of

brane inflation.

On the other hand, brane inflation might be sufficient to solve the

standard problems of our 4-dimensional world. It has been stressed that it

can only be realized in the case of a single compact dimension of the type
discussed earlier [19, 20]. Let us then see in more detail under what conditions

brane inflation is possible in the context of the simple model studied in the

previous section. If we allow for a nonvanishing energy-momentum tensor

in the bulk

(TB) a
b 5 diag( 2 r B , pB , pB , pB , pB) (27)

with the usual assumption of isotropy and inhomogeneity, then (19) reads
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HÇ 1 2H 2 5 2
k 4

5

36
r ( r 1 3p) 2

1

3
k 2

5pB (28)

Assuming for simplicity vacuum solutions in the bulk and in the brane, i.e.,

pB 5 2 r B and p 5 2 r , we see that, in order to have the brane vacuum
energy dominate the bulk vacuum energy, we must require

r B
¿ r 2/M 3 (29)

This requires specific initial conditions, but is not incompatible with the

obvious conditions: r B , M 5 and r , M 4.

Under this requirement, vacuum energy dominance yields a Hubble

parameter

H 5
r

6M 3 (3 0)

which is linear in r , as observed already above and stressed by several authors

[21, 19, 20].

With such a dependence of the Hubble parameter on r , a problem often
discussed in connection of brane inflationÐ the problem of the mass of the

inflaton field [22, 23 ]Ð is not present. Indeed, since r , M 4, we have H ,
M and the fact that the mass of the inflaton is smaller than H is not a stringent

constraint, as it would be if we were to apply the standard formulas valid in

conventional scenarios of inflation.

An explicit example of such an inflationary solution has been given by
Kaloper and Linde [19 ]. The metric is given by (14) with

b 5 const

n 5 1 2
b r
6

) y )

a 5 eHt 1 1 2
b r
6

) y ) 2 (31)

with H 5 r /6. As explained earlier and in ref. 18, this local solution of the

Einstein equations is promoted to a global one if we introduce a second brane
at y 5 1/2 with an energy density r * satisfying (26).

5. CONCLUSIONS

There are many more aspects besides inflation that may be envisaged

from the point of view of this nonconventional cosmology.
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First, the bulk energy density may dominate over the energy density of

the brane. The matter in the bulk would then behave as some hidden matter,

but, being 5-dimensional, it would lead to a nonstandard evolution as well.
Topological defects are another interesting issue and the structure of

space-time may lead to interesting new structures [11, 24, 25 ].

Of course, a central question is whether such an unconventional cosmo-

logical scenario might still be at work presently. It can easily be shown [18]

that the presently allowed values for the energy density, the Hubble constant,

and the acceleration parameter do not allow for such a possibility. Moreover,
it is difficult to reconcile such a scenario with nucleosynthesis. This tends

to show that the universe has undergone a transition to a standard evolution

at a time prior to nucleosynthesis. Obviously, such a transition occurs concur-

rently with the stabilization of the compact dimension. Typically, a potential

is generated for the radius of the compact dimension and from then on, one

loses the 5-dimensional character (i.e., the reparametrization invariance of
the 5-dimensional spacetime) of the Einstein equations, which is the basis

of the nonconventional scenario discussed above. The stabilization of the

compact dimension(s) is, however, a difficult problem, which leaves little

hope at this point to be able to study the transition to a standard 4-dimen-

sional scenario.
Finally, it should be stressed that, in the case where the fundamental

scale M is pushed toward the electroweak scale (and n 5 2), the radius of

the compact dimension provides an interesting microscopic scale: R , (1 02 4

eV) 2 1. Such a mass scale corresponds indeed to the vacuum energy that

would be required in order to explain a nonvanishing cosmological constant

at present times. Pseudo-Goldstone bosons with a mass of the order of the
Hubble constant H 0 have been proposed [26 ] as viable candidates. It was

recently noted [27 ] that the modulus field whose value fixes the radius R
has precisely this property if the Casimir energy dominates the universe. This

would, however, imply undesirable time variation of the Newton constant.

An alternate possibility lies in the presence of Goldstone bosons associated

with the position of the branes. It turns out [3 ] that these Goldstone bosons
are eaten by the gauge fields g m a (a 5 4, . . . , n 1 3) to give a mass precisely

in the range advocated.
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